Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
    
Advanced search   
 


 
   Table of Contents  
ORIGINAL ARTICLE
Year : 2011  |  Volume : 2  |  Issue : 2  |  Page : 62-66  

Significant relationship between local angle at fused segments and C2-7 angle: Average duration of longer than 20 years after anterior cervical discectomy and fusion


Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan

Date of Web Publication24-Aug-2012

Correspondence Address:
T Takami
MD, Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585
Japan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-8237.100054

Rights and Permissions
   Abstract 

Background : The authors have focused their attention to the radiological durability of cervical sagittal alignment after anterior cervical discectomy and fusion (ACDF) using autologous bone grafting. Materials and Methods : Among the patients who underwent ACDF with trans-unco-discal (TUD) approach between 1976 and 1997, 22 patients (16 males and 6 females) made return visits for a clinical evaluation. Patients with trauma or previously treated by anterior cervical fusion or by posterior decompression were excluded from the present study. Clinical evaluation included adjacent segment degeneration (ASD), osseous fusion, local angle at the fused segments and C2-7 angle of cervical spine. Results : The duration after ACDF ranged from 13 to 34 years with an average of 21.3 ± 7.0 years. A single level fusion was done on 8 patients, 2 levels on 11 patients, 3 levels on 2 patients, and 4 levels on 1 patient. Imaging studies indicated that 12 of the 22 patients (54.5%) were graded as having symptomatic ASD. Osseous bony fusion at ACDF was recognized in all cases. None of the patients demonstrated kyphotic malalignment of the cervical spine. Average degrees of local angle at the fused segments and the C2-7 angle were 7.06 and 17.6, respectively. Statistical analysis indicated a significant relationship between the local at the fused segments and C2-7 angles. Conclusions : Sagittal alignment of the cervical spine was durable long after ACDF when the local angle at the fused segments was well stabilized.

Keywords: Anterior cervical, cervical alignment, interbody fusion, local angle, trans-unco-discal approach


How to cite this article:
Nagata T, Takami T, Yamagata T, Uda T, Naito K, Ohata K. Significant relationship between local angle at fused segments and C2-7 angle: Average duration of longer than 20 years after anterior cervical discectomy and fusion. J Craniovert Jun Spine 2011;2:62-6

How to cite this URL:
Nagata T, Takami T, Yamagata T, Uda T, Naito K, Ohata K. Significant relationship between local angle at fused segments and C2-7 angle: Average duration of longer than 20 years after anterior cervical discectomy and fusion. J Craniovert Jun Spine [serial online] 2011 [cited 2020 Jul 13];2:62-6. Available from: http://www.jcvjs.com/text.asp?2011/2/2/62/100054


   Introduction Top


Anterior cervical discectomy and fusion (ACDF) has been the standard procedure to treat cervical disorders of myelopathy or radiculopathy caused by cervical spondylosis, disc herniation or ossification of the posterior longitudinal ligament. [1],[2],[3],[4],[5] Although technical advancement in ACDF has been made, there is currently no consensus on the optimal technique. The surgical essence in ACDF is to achieve the neural decompression and to provide a solid osseous fusion. In the present study, authors have focused their attention to the radiographic durability of cervical sagittal alignment long after ACDF with trans-unco-discal (TUD) approach [6] using autologous bone grafting with an average duration of longer than 20 years.


   Materials and Methods Top


A clinical investigation was established in patients who underwent ACDF using autologous iliac bone grafting between 1976 and 1997 in Osaka City University Hospital and affiliated hospitals. A combined anterior and lateral approach to cervical discs, what we call TUD approach, [6] was applied by a single surgeon. All patients presented with radiculopathy and/or myelopathy due to disc herniation, osteophyte formation or ossification of the posterior longitudinal ligament (OPLL), and underwent ACDF. Patients with trauma or previously treated by anterior cervical fusion or by posterior decompression were excluded from the present study. Among the patients identified in our neurosurgical registry, 22 patients (16 males and 6 females) made return visits for a clinical evaluation.

TUD approach

Technical detail of the TUD approach was published in 1976. The key concept of the TUD approach is a combined anterior and lateral approach to cervical discs with uncectomy on the approach side. Osteophyte, OPLL and disc material can be removed safely with special attention to avoid the injury of vertebral artery. Extensive removal of posterior and lateral osteophyte verified the sufficient decompression of spinal cord and both nerve roots. After the intervertebral decompression, autologous bone grafting of iliac bone was accomplished for interbody fusion, followed by external rigid fixation. External rigid fixation was applied for 1 to 3 months after surgery to assure the appropriate spinal curvature of cervical spine.

Clinical evaluation

Clinical evaluation included a neurological as well as radiological examination. The neurological condition was estimated using the Neurosurgical Cervical Spine Scale (NCSS) [Table 1]. [7] NCSS before surgery was estimated based on the hospital medical chart, and NCSS at a follow-up visit was scored by patient himself or herself. Adjacent segment degeneration (ASD) at the fused segments was evaluated based on neurological symptoms and MRI T2-weighted sagittal images and classified into 4 grades as shown in [Table 2]. Grade 0 or 1 ASD was recognized as asymptomatic ASD, and Grade 2 or 3 as symptomatic ASD. Osseous bony fusion was evaluated using plain lateral radiography of the cervical spine. Solid osseous fusion was defined as a clear osseous bridge at the intervertebral space. The local angle of the fused segments was determined as the angle made by the 2 lines parallel to the superior wall of the upper fused vertebral body and the inferior wall of the lower fused vertebral body [Figure 1]. The total alignment of the cervical spine was evaluated with the C2-7 angle of spinal curvature [Figure 1]. A line is extended from the posterior inferior corner of the C2 vertebral body down to the posterior inferior corner of the C7 vertebral body. Lordosis is considered present if all intervening vertebral bodies are anterior to this line. If at least 1 vertebral body is traversed by the line, cervical alignment is judged to be straight. If the intervening vertebral bodies are posterior to the line, kyphosis is present.
Figure 1: The measurement method of the local angle of the fused segments (a) and the C2-7 angle of spinal curvature (b)

Click here to view
Table 1: Summary of the neurosurgical cervical spine scale

Click here to view
Table 2. Four grades of adjacent segment degeneration at the fused segments

Click here to view


Statistical analysis

All data was expressed as the mean ± standard deviation. Statistical analysis was conducted using the paired t-test, the unpaired t-test and the Spearman rank correlation coefficient. The level of significance was a probability value of less than 0.05.


   Results Top


A total of 22 of these patients made return visits for a clinical evaluation. There were 16 males and 6 females. The age of patients at surgery ranged from 39 to 65 years with an average of 48.7 ± 6.94 years of age. The duration after ACDF ranged from 13 to 34 years with an average of 21.3 ± 7.0 years. A single level fusion was done on 8 patients, 2 levels on 11 patients, 3 levels on 2 patients, and 4 levels on 1 patient. Radiological summary of 22 patients is shown in [Table 3].
Table 3. Radiological summary of 22 patients

Click here to view


Retrospective scoring of NCSS at the surgery indicated an average score of 3.73 ± 0.18 in lower extremity motor function, 3.59 ± 0.19 in upper extremity motor function, 2.73 ± 0.10 in sensory function and/or pain and 10.05 ± 0.37 in total. A self-check scoring of NCSS at a follow-up visit demonstrated an average score of 3.72 ± 0.18 in lower extremity motor function, 3.91 ± 0.22 in upper extremity motor function, 2.73 ± 0.10 in sensory function and/or pain and 10.36 ± 0.58 in total. Statistical analysis of NCSS indicated significant recovery of upper extremity motor function and no significant deterioration of lower extremity motor and sensory function and/or pain.

Assessment of ASD indicated that 4 patients were graded into Grade 0, 6 patients into Grade 1, 7 patients into Grade 2 and 5 patients into Grade 3. The average grade was 1.6. A total of 12 of the 22 patients (54.5%) were graded as having symptomatic ASD. Osseous bony fusion at ACDF was recognized in all cases [Figure 2]. The local angle at the fused segments ranged from -6.56 to 22.9 degrees with an average of 7.06 degrees. The C2-7 angle of spinal total alignment ranged from 0 to 55.8 degrees with an average of 17.6 degrees. None of the patients demonstrated kyphotic alignment of the cervical spine. Statistical analysis indicated that there was a significant relationship between the local angle at the fused segments and the C2-7 angle (γ = 0.58, P = 0.0068) [Figure 3]. There was no significant relationship between occurrence of symptomatic ASD of Grade 2 or 3 and spinal sagittal alignment of the local angle at the fused segments or C2-7 angle. There was no significant difference regarding the local angle at the fused segments, C2-7 angle or the number of spinal fusion levels between the asymptomatic ASD and symptomatic ASD.
Figure 2: Representative cases of 1-level fusion (26 years after ACDF) (a), 2-level fusion (32 years after ACDF) (b), 3-level fusion (22 years after ACDF) (c) and 4-level fusion (34 years after ACDF) (d)

Click here to view
Figure 3: Statistical analysis indicating a significant relationship between the local angle at the fused segments and the C2-7 angle (γ = 0.58, P = 0.0068)

Click here to view



   Discussion Top


In the present study, the authors have focused their attention to the radiological durability of cervical sagittal alignment after ACDF with TUD approach using autologous bone grafting. The shortcoming of the present study is the uneven results obtained by return visits, because the patients with poorer outcome or deterioration might be more inclined to make return visits. The points of the present study are as follows: 1) the long-term radiological outcome after ACDF of TUD approach with an average duration of longer than 20 years were demonstrated; 2) None of the patients demonstrated the kyphotic malalignment of cervical spine and pseudoarthrosis at the final follow-up visit, although ASD has been observed in 12 of 22 patients (54.5%); 3) the lordotic angle at the fused segments resulted in a significant correlation with the C2-7 angle of cervical alignment.

The local loss of cervical angle or kyphotic malalignment of the cervical spine is thought to contribute to progression of degenerative changes in adjacent segments long after ACDF. [8],[9] ACDF may accelerate the degeneration of the adjacent segment on top of that caused by physiologic aging. Mechanisms by which kyphotic malalignment contributes to the accelerated degenerative process may involve both a change of dynamic kinematics of the cervical spine and increased biomechanical stress on the anterior vertebral elements in adjacent intervertebral segments. [10],[11]

In a historical view, ACDF has been combined with autologous bone grafting to provide long-term stability of osseous fusion. Success rates of ACDF in cases of cervical spondylosis have ranged from 81% to 97%, [4],[12],[13],[14] with graft dislodgement occurring at a rate of 2.1% to 4.6%, kyphosis at a rate of 3% to 10% and pseudoarthrosis at a rate of 1% to 3%. [13],[15] In multiple-level fusions, pseudoarthrosis can occur at a rate as high as 33%. [16] These rates of fusion failure, graft dislodgement and postoperative cervical deformity have stimulated the development of fixation devices such as anterior plating or intervertebral cage to optimize the stabilization of the cervical spine. Although there have been several technical advancements in ACDF, there is currently no consensus on the optimal technique. A stand-alone interbody fusion cage has been proven to be safe and effective and is now a standard option for ACDF. [14],[15],[17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27] Our recent analysis suggested that the clinical outcome with a stand-alone interbody fusion cage has been encouraging in one-level and two-level fusion procedure. [28] Cervical disc replacement by a stand-alone cage can restore physiologic disc height, provide immediate load bearing support of the cervical spine and may promote osseous fusion. Despite the advantages of a stand-alone cage, it may carry the risk of cage subsidence that may lead to kyphotic malalignment of the cervical spine long after ACDF. Mechanical support of the graft material at the anterior vertical line may be crucial to induce osseous fusion with a satisfactory angle of cervical alignment long after ACDF. Proper restoration of cervical alignment through a careful surgical technique and decompression of the neural structures cannot be overemphasized. Although a variety of internal fixation instrumentation such as cage, plate or screw can be available in the current circumstances, the basic and essential concept of ACDF appears to be unvarying in nature. Authors concluded that sagittal alignment of the cervical spine was durable long after ACDF when the local angle at the fused segments was well stabilized.


   Acknowledgments Top


All of authors express our deepest gratitude to our late emeritus professor Akira Hakuba, M.D. who developed the surgical technique of trans-unco-discal approach of a combined anterior and lateral approach to cervical discs (J Neurosurg 45:284-291, 1976).

Conflict of Interest: No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

 
   References Top

1.Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K. Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy Spine (Phila Pa 1976) 1993;18:2167-73.  Back to cited text no. 1
    
2.Bohlman HH, Emery SE, Goodfellow DB, Jones PK. Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients J Bone Joint Surg Am 1993;75:1298-307.  Back to cited text no. 2
[PUBMED]    
3.Gore DR, Sepic SB, Gardner GM. Roentgenographic findings of the cervical spine in asymptomatic people Spine (Phila Pa 1976) 1986;11:521-4.  Back to cited text no. 3
    
4.Robinson RA, Walker AE, Ferlic DC, Wiecking DK. The results of anterior interbody fusion of the cervical spine J Bone Joint Surg Am 1962;44:1569-87.  Back to cited text no. 4
    
5.Whitecloud TS 3rd. Anterior surgery for cervical spondylotic myelopathy. Smith-Robinson, Cloward, and vertebrectomy Spine (Phila Pa 1976) 1988;13:861-3.  Back to cited text no. 5
    
6.Hakuba A. Trans-unco-discal approach. A combined anterior and lateral approach to cervical discs J Neurosurg 1976;45:284-91.  Back to cited text no. 6
[PUBMED]    
7.Kadoya S. Grading and scoring system for neurological function in degenerative cervical spine disease--Neurosurgical Cervical Spine Scale. Neurol Med Chir (Tokyo) 1992;32:40-1.  Back to cited text no. 7
[PUBMED]    
8.Faldini C, Pagkrati S, Leonetti D, Miscione MT, Giannini S. Sagittal segmental alignment as predictor of adjacent-level degeneration after a Cloward procedure Clin Orthop Relat Res 2011;469:674-81.  Back to cited text no. 8
    
9.Katsuura A, Hukuda S, Saruhashi Y, Mori K. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels Eur Spine J 2001;10:320-4.  Back to cited text no. 9
    
10.Kandziora F, Pflugmacher R, Schafer J, Born C, Duda G, Haas NP, et al. Biomechanical comparison of cervical spine interbody fusion cages Spine (Phila Pa 1976) 2001;26:1850-7.  Back to cited text no. 10
    
11.Takeshima T, Omokawa S, Takaoka T, Araki M, Ueda Y, Takakura Y. Sagittal alignment of cervical flexion and extension: Lateral radiographic analysis Spine (Phila Pa 1976) 2002;27:E348-55.  Back to cited text no. 11
    
12.Bishop RC, Moore KA, Hadley MN. Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: A prospective comparative analysis J Neurosurg 1996;85:206-10.  Back to cited text no. 12
    
13.Gore DR, Sepic SB. Anterior cervical fusion for degenerated or protruded discs. A review of one hundred forty-six patients Spine (Phila Pa 1976) 1984;9:667-71.  Back to cited text no. 13
    
14.Thome C, Leheta O, Krauss JK, Zevgaridis D. A prospective randomized comparison of rectangular titanium cage fusion and iliac crest autograft fusion in patients undergoing anterior cervical discectomy J Neurosurg-Spine 2006;4:1-9.  Back to cited text no. 14
    
15.Matge G. Anterior interbody fusion with the BAK-cage in cervical spondylosis Acta Neurochir (Wien) 1998;140:1-8.  Back to cited text no. 15
    
16.White AA 3rd, Southwick WO, Deponte RJ, Gainor JW, Hardy R. Relief of Pain by Anterior Cervical-Spine Fusion for Spondylosis. Report of 65 Patients J Bone Joint Surg Am 1973;A 55:525-34.  Back to cited text no. 16
    
17.Barsa P, Suchomel P. Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion Eur Spine J 2007;16:1395-400.  Back to cited text no. 17
    
18.Bartels RH, Donk RD, Feuth T. Subsidence of stand-alone cervical carbon fiber cages Neurosurgery 2006;58:502-8; discussion 502-8.  Back to cited text no. 18
    
19.Cauthen JC, Theis RP, Allen AT. Anterior cervical fusion: A comparison of cage, dowel and dowel-plate constructs Spine J 2003;3:106-17; discussion 117.  Back to cited text no. 19
    
20.Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease Neurosurgery 2002;51:1343-9.  Back to cited text no. 20
    
21.Hacker RJ. A randomized prospective study of an anterior cervical interbody fusion device with a minimum of 2 years of follow-up results J Neurosurg 2000;93:222-6.  Back to cited text no. 21
    
22.Hida K, Iwasaki Y, Yano S, Akino M, Seki T. Long-term follow-up results in patients with cervical disk disease treated by cervical anterior fusion using titanium cage implants. Neurol Med-Chir (Tokyo) 2008;48:440-6.  Back to cited text no. 22
[PUBMED]    
23.Matge G. Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir (Wien) 2002;144:539-50.  Back to cited text no. 23
    
24.Schmieder K, Wolzik-Grossmann M, Pechlivanis I, Engelhardt M, Scholz M, Harders A. Subsidence of the Wing titanium cage after anterior cervical interbody fusion: 2-year follow-up study J Neurosurg-Spine 2006;4:447-53.  Back to cited text no. 24
    
25.Tani S, Nagashima H, Isoshima A, Akiyama M, Ohashi H, Tochigi S, et al. A unique device, the disc space-fitted distraction device, for anterior cervical discectomy and fusion: Early clinical and radiological evaluation J Neurosurg Spine 2010;12:342-6.  Back to cited text no. 25
    
26.van Jonbergen HP, Spruit M, Anderson PG, Pavlov PW. Anterior cervical interbody fusion with a titanium box cage: Early radiological assessment of fusion and subsidence. Spine J 2005;5:645-9; discussion 649.  Back to cited text no. 26
[PUBMED]    
27.Wilke HJ, Kettler A, Goetz C, Claes L. Subsidence resulting from simulated postoperative neck movements: An in vitro investigation with a new cervical fusion cage. Spine (Phila Pa 1976) 2000;25:2762-70.  Back to cited text no. 27
    
28.Yamagata T, Takami T, Uda T, Ikeda H, Nagata T, Sakamoto S, et al. Verification of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion: Cage subsidence and cervical alignment J Clin Neurosci, in press.  Back to cited text no. 28
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Acknowledgments
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed3847    
    Printed213    
    Emailed1    
    PDF Downloaded23    
    Comments [Add]    

Recommend this journal