Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
    
Advanced search   
 
ORIGINAL ARTICLE
Year : 2013  |  Volume : 4  |  Issue : 1  |  Page : 10-15

Validation protocol for assessing the upper cervical spine kinematics and helical axis: An in vivo preliminary analysis for axial rotation, modeling, and motion representation


1 Laboratory of Functional Anatomy, Department of Physiotherapy and Rehabilitation; Research Unit of Osteopathy, Department of Osteopathic Sciences, Faculty of Motor Sciences, Free University of Brussels, Brussels, Belgium
2 Laboratory of Anatomy, Biomechanics and Organogenesis, Department of Anatomy, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
3 Laboratory of Functional Anatomy, Department of Physiotherapy and Rehabilitation, Faculty of Motor Sciences; Laboratory of Anatomy, Biomechanics and Organogenesis, Department of Anatomy, Faculty of Medicine, Free University of Brussels, Brussels, Belgium

Correspondence Address:
Pierre-Michel Dugailly
Laboratory of Functional Anatomy, Faculty of Motor Sciences (CP619), Université Libre de Bruxelles (ULB), Route de Lennik 808, B-1070 Bruxelles
Belgium
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-8237.121617

Rights and Permissions

Context: The function of the upper cervical spine (UCS) is essential in the kinematics of the whole cervical spine. Specific motion patterns are described at the UCS during head motions to compensate coupled motions occurring at the lower cervical segments. Aims: First, two methods for computing in vitro UCS discrete motions were compared to assess three-dimensional (3D) kinematics. Secondly, the same protocol was applied to assess the feasibility of the procedure for in vivo settings. Also, this study attempts to expose the use of anatomical modeling for motion representation including helical axis. Settings and Design: UCS motions were assessed to verify the validity of in vitro 3D kinematics and to present an in vivo procedure for evaluating axial rotation. Materials and Methods: In vitro kinematics was sampled using a digitizing technique and computed tomography (CT) for assessing 3D motions during flexion extension and axial rotation. To evaluate the feasibility of this protocol in vivo, one asymptomatic volunteer performed an MRI kinematics evaluation of the UCS for axial rotation. Data processing allowed integrating data into UCS 3D models for motion representation, discrete joint behavior, and motion helical axis determination. Results: Good agreement was observed between the methods with angular displacement differences ranging from 1° to 1.5°. Helical axis data were comparable between both methods with axis orientation differences ranging from 3° to 6°. In vivo assessment of axial rotation showed coherent kinematics data compared to previous studies. Helical axis data were found to be similar between in vitro and in vivo evaluation. Conclusions: The present protocol confirms agreement of methods and exposes its feasibility to investigate in vivo UCS kinematics. Moreover, combining motion analysis, helical axis representation, and anatomical modeling, constitutes an innovative development to provide new insights for understanding motion behaviors of the UCS.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3741    
    Printed71    
    Emailed2    
    PDF Downloaded30    
    Comments [Add]    

Recommend this journal