Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
    
Advanced search   
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 1  |  Page : 50-57

Analysis of the spinal nerve roots in relation to the adjacent vertebral bodies with respect to a posterolateral vertebral body replacement procedure


1 Department of Orthopedic Surgery, King Saud University, Riyadh, Saudi Arabia
2 Division of Orthopedic Surgery, Department of Surgery, Orthopedic Research Laboratory, McGill University Health Center, McGill University; Division of Orthopedic Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, Canada
3 Division of Orthopedic Surgery, Department of Surgery, Orthopedic Research Laboratory, McGill University Health Center, McGill University; Department of Surgery, McGill University, Montreal, Canada
4 Division of Orthopedic Surgery, Department of Surgery, Orthopedic Research Laboratory, McGill University Health Center, McGill University, Montreal, Canada

Correspondence Address:
Abdulrahman D Algarni
Department of Orthopedic Surgery, King Saud University, Riyadh
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-8237.199869

Rights and Permissions

Objective: This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. Summary of Background Data: The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. Methods: This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1–L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). Results: (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. Conclusions: The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1963    
    Printed26    
    Emailed0    
    PDF Downloaded17    
    Comments [Add]    

Recommend this journal