Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
    
Advanced search   
 


 
   Table of Contents  
ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 2  |  Page : 127-131  

Cadaveric study for ideal dorsal pedicle screw entry point


Department of Orthopedics, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India

Date of Web Publication14-Jun-2017

Correspondence Address:
Aditya Anand Dahapute
Department of Orthopedics, New Buildig, 6th Floor, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai - 400 012, Maharashtra,
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcvjs.JCVJS_5_17

Rights and Permissions
   Abstract 

Objective: To determine the entry for the dorsal pedicular screw in relation to the notch present at the junction of base of the lateral margin of superior articular process with superior border of transverse process in dorsal spine. The advantage of this technique is a constant and easily identifiable entry point which does not involve partial resection of the inferior facet, thus maintaining stability and maintaining the well defined transverse and sagittal screw angles and decreasing the incidence of medial and inferior pedicle violation.
Materials and Methods: The study was carried out using ten cadavers (four male and six female). Spinal column was dissected completely from cadavers. Before the experiment, normal anatomy was confirmed on all cadavers excluding cases of spinal deformity. Dissection was done by the spine surgeons taking care to preserve all the bony landmarks near the entry point. This study was carried out bilaterally on pedicles between the first and twelfth thoracic (T) vertebrae.
Results: The relation of the superior articular notch and transverse process to the thoracic spine pedicles was studied. It was found that superior third of the pedicle was related to the superior articular notch and the transverse process in the first five thoracic vertebrae. The relation of these structures to the pedicle of the sixth thoracic vertebra was somewhat equally distributed between the superior and middle third of the pedicle. From the 7th to 12th thoracic vertebrae the superior articular process and transverse process were related to the middle third of the pedicle in almost all the cases. It is important to note that the inferior 1/3rd of the pedicle was not related to these landmarks at any of the levels.
Conclusion: We conclude that the ideal pedicle entry point described here should be considered by surgeons during thoracic pedicle screw instrumentation. The notch at the base of the superior articular process will always remain constant and therefore an important anatomical landmark in guiding the screw toward the entry of the pedicle.

Keywords: Cadaveric study, dorsal vertebra, notch, pedicular screw, transverse process


How to cite this article:
Sonone S, Dahapute AA, Pal M, Virani S, Gala R. Cadaveric study for ideal dorsal pedicle screw entry point. J Craniovert Jun Spine 2017;8:127-31

How to cite this URL:
Sonone S, Dahapute AA, Pal M, Virani S, Gala R. Cadaveric study for ideal dorsal pedicle screw entry point. J Craniovert Jun Spine [serial online] 2017 [cited 2019 Nov 15];8:127-31. Available from: http://www.jcvjs.com/text.asp?2017/8/2/127/208059


   Introduction Top


Thoracic pedicle screws provide a number of advantages over other methods of fixation in the dorsal spine in treating a variety of conditions including better pull-out strength [1] and greater control in the sagittal, coronal, and rotational planes due to increased stability to axial, bending, and rotational forces by three-column fixation,[2],[3] fewer vertebral motion segments fusion,[4],[5],[6],[7],[8],[9] reduction in the duration of postoperative bracing,[10] and secure fixation after laminectomy or in the absence of the posterior elements.[11] In patients with spinal deformity, segmental pedicle fixation has revealed greater three-dimensional correction with decreased rates of curve progression and higher fusion rates,[12],[13],[14],[15] the ability to treat the rigid scoliosis between 70° and 100° curves without anterior release [15] and direct apical vertebral derotation to enhance correction and potentially obviate the need for a thoracoplasty.[16],[17],[18]

Thoracic pedicle screw fixation is a difficult procedure to master and can cause serious complications due to screw misplacement. In the thoracic spine, the benefits of pedicle screws have been associated with its potential risks, such as spinal canal violation, pedicle fracture, nerve root compression, and vascular lesions.[14],[19],[20],[21],[22],[23],[24] Furthermore, the narrow and inconsistent shape of the thoracic pedicles, especially in spinal deformity, makes their placement technically challenging. Several techniques have been proposed to decrease the incidence of screw malposition and enhance safety. One of these, the free hand technique, relies on an accurate entry point, correct screw trajectories in the transverse and sagittal plane, and palpation of all walls of the pedicles during each step of insertion. However, in spite of the entry points for dorsal pedicle screws being well described in the literature, there is a variability among the spine surgeons in interpretation of these entry points. This was well documented by our survey carried out to prove this.

We conducted a survey among 31 spine surgeons for ideal pedicle entry point in D2 and D10 vertebra [Figure 1].
Figure 1: The area around the entry point of the pedicle screw divided into 12 zones

Click here to view


Thirty-one spine surgeons were given photograph of D2 and D10 vertebra with these 12 zones drawn and each of them was asked to mark the entry point for D2 and D12 pedicle screw.

Only the entry point was to be drawn and the screw angulation and the trajectory were excluded.

[Table 1] and [Table 2] show incidence of entry points in different marked areas in D10 and D2 vertebrae, respectively.
Table 1: Incidence of entry points in different marked areas in D10 vertebrae

Click here to view
Table 2: Incidence of entry points in different marked areas in D2 vertebrae

Click here to view


We observed a wide variability in deciding entry point while passing pedicular screws. Hence, there need to standardize entry point in relation to fixed bony landmark to decrease interobserver variability in deciding entry point for dorsal pedicular screws.

The purpose of this study is to delineate the ideal entry point for “freehand” thoracic pedicle screw placement with respect to the pertinent anatomy.


   Material and Methods Top


The study was carried out using ten cadavers (four male and six female). Spinal column was dissected completely from cadavers. Before the experiment, normal anatomy was confirmed on all cadavers excluding cases of spinal deformity. Dissection was done by the spine surgeons taking care to preserve all the bony landmarks near the entry point. This study was carried out bilaterally on pedicles between the first and twelfth thoracic (T) vertebrae.

The entire spinal column was dissected free from soft tissue and bones. Facet joint was exposed. Only the inferolateral part of inferior articular process which overhangs superior articular process was osteotomized. The lateral extent of facet joint and notch at the base of superior articular process was defined. Since the entire spinal column was dissected including excision of the ribs, the relation of notch and superior border of transverse process was defined with respect to pedicle on sagittal view in all 12 thoracic vertebrae. Pedicle was divided into three zones, i.e., superior, middle, and inferior one-third. For all practical purposes, entry point in coronal plane was 5 mm medial to the notch [Figure 2],[Figure 3],[Figure 4].
Figure 2: Division of pedicle in three zones, i.e., superior, middle, and inferior one-third

Click here to view
Figure 3: Relation of notch (marked blue) at superior articular facet base with pedicle of D10 vertebra

Click here to view
Figure 4: Relation of notch (marked blue) at superior articular facet base with pedicle of D10 vertebra

Click here to view



   Results Top


[Table 3] shows relation of superior articular notch with pedicle.
Table 3: Relation of superior articular notch with pedicle

Click here to view


[Table 4] shows relation of superior border of transverse process with pedicle.
Table 4: Relation of superior border of transverse process with pedicle

Click here to view



   Discussion Top


Rampersaud et al.[25] showed that the maximal permissible translational error at the midthoracic and thoracolumbar junction is <1 mm and the permissible rotation error is <5°. Parent et al. and Zindrick et al. showed in morphometric studies that the transverse diameter of the pedicle is <5 mm in some normal and scoliotic spines at the midthoracic level.[26],[27] Hence, it is important to have a constant entry point that is easy to identify and that the transverse and sagittal angles be calculated from this entry point.

Chung et al. in its cadaveric study showed that entry point is situated at the base of the superior facet at the junction of the lateral one-third and medial two-thirds.[28] The superior distance of the ideal pedicular entry point from the center of the pedicle was greater at the upper thoracic spine (T1) and lower thoracic spine T10–T12 and fairly constant between T2 and T9. This means that the point lies close to the center of the pedicle in the middle thoracic spine and farther away toward the transition vertebrae. However, sagittal screw angles were at a maximum angle at the upper thoracic spine (T1 and T2) and showed a decreasing trend in the direction of T12.[28] By this technique, 1.6% of the screws showed superior violation while no screws showed inferior violation; 1.6% screws showed a lateral or medial violation of <2 mm each, while 1.6% showed a lateral violation of 2–4 mm and 0.8% showed a lateral violation of >4 mm. There were no medial violations >2 mm. Most of the violations were at the midthoracic level.

In a cadaveric study by Cinotti et al.[11] that used the junction of the superior border of the transverse process and lateral one-third of the base of the transverse process as the entry point, the incidence of medial screw violation was 2% and that of the lateral cortex 10%. This study also mentioned that the bottom of the superior facet was located proximal to the center of the pedicle at T4 but that it moved caudally from T4 to T12 where it was situated 2 mm below the center of the pedicle.

This discrepancy in the study by Kook and Cinotti may be because Cinotti projected the pedicle onto the posterior surface of the lamina, while Kook used radiographs to determine the center of the pedicle.

Vaccaro et al.[29] reported the entry point for T11 and T12 to be the junction of the middle of the transverse process and the middle of the superior facet, and for T4–T9 to be the vertebrae junction of the superior border of transverse process and the middle of the superior facet. However, 41% of the pedicle screws were outside the boundaries of pedicle.

Cinotti et al.[11] reported that choosing the entry point along the center of the superior facet will increase the incidence of medial wall violation. Hence, a line along the midpoint of the superior facet should not be considered. Disadvantage of a superior entry point is that the screw has to be directed more caudally; hence, it is not parallel to the end plate which leads to a slightly lower pull-out strength. However, the screw still has a much higher pull-out strength than hooks.[30]


   Conclusion Top


We conclude that the ideal pedicle entry point described here should be considered by surgeons during thoracic pedicle screw instrumentation. The notch at the base of the superior articular process will always remain constant and therefore an important anatomical landmark in guiding the screw toward the entry of the pedicle.

Most surgeons should bear in mind that the results of our study may not be applicable to all patients worldwide in terms of ethnicity. Furthermore, if the surgeon is not fully experienced in the method reported here, it will be necessary to combine it with another technique.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Liljenqvist U, Hackenberg L, Link T, Halm H. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 2001;67:157-63.  Back to cited text no. 1
    
2.
Krag MH, Weaver DL, Beynnon BD, Haugh LD. Morphometry of the thoracic and lumbar spine related to transpedicular screw placement for surgical spinal fixation. Spine (Phila Pa 1976) 1988;13:27-32.  Back to cited text no. 2
    
3.
Vaccaro AR, Rizzolo SJ, Allardyce TJ, Ramsey M, Salvo J, Balderston RA, et al. Placement of pedicle screws in the thoracic spine. Part I: Morphometric analysis of the thoracic vertebrae. J Bone Joint Surg Am 1995;77:1193-9.  Back to cited text no. 3
    
4.
Krag MH, Beynnon BD, Pope MH, Frymoyer JW, Haugh LD, Weaver DL. An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine. Design and testing. Clin Orthop Relat Res 1986;(203):75-98.  Back to cited text no. 4
    
5.
Liljenqvist U, Lepsien U, Hackenberg L, Niemeyer T, Halm H. Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis. Eur Spine J 2002;11:336-43.  Back to cited text no. 5
    
6.
Misenhimer GR, Peek RD, Wiltse LL, Rothman SL, Widell EH Jr. Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size. Spine (Phila Pa 1976) 1989;14:367-72.  Back to cited text no. 6
    
7.
Ugur HC, Attar A, Uz A, Tekdemir I, Egemen N, Genç Y. Thoracic pedicle: Surgical anatomic evaluation and relations. J Spinal Disord 2001;14:39-45.  Back to cited text no. 7
    
8.
Kim YJ, Lenke LG, Cho SK, Bridwell KH, Sides B, Blanke K. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2004;29:2040-8.  Back to cited text no. 8
    
9.
Kim YJ, Lenke LG, Bridwell KH, Kim J, Cho SK. Selection of the Lowest Instrumented Vertebra in Thoracic Adolescent Idiopathic Scoliosis (Lenke Type 1 and 2) Following Segmental Posterior Spinal Fusion, Poster Presentation by North America Spine Society Annual Meeting: Chicago; October, 2004.  Back to cited text no. 9
    
10.
Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB. Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine (Phila Pa 1976) 1995;20:1399-405.  Back to cited text no. 10
    
11.
Cinotti G, Gumina S, Ripani M, Postacchini F. Pedicle instrumentation in the thoracic spine. A morphometric and cadaveric study for placement of screws. Spine (Phila Pa 1976) 1999;24:114-9.  Back to cited text no. 11
    
12.
Hamill CL, Lenke LG, Bridwell KH, Chapman MP, Blanke K, Baldus C. The use of pedicle screw fixation to improve correction in the lumbar spine of patients with idiopathic scoliosis. Is it warranted? Spine (Phila Pa 1976) 1996;21:1241-9.  Back to cited text no. 12
    
13.
Liljenqvist UR, Halm HF, Link TM. Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine (Phila Pa 1976) 1997;22:2239-45.  Back to cited text no. 13
    
14.
Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER. Thoracic pedicle screw fixation in spinal deformities: Are they really safe? Spine (Phila Pa 1976) 2001;26:2049-57.  Back to cited text no. 14
    
15.
Luhmann SJ, Lenke LG, Kim YJ, Bridwell KH, Schootman M. Thoracic adolescent idiopathic scoliosis curves between 70 degrees and 100 degrees: Is anterior release necessary? Spine (Phila Pa 1976) 2005;30:2061-7.  Back to cited text no. 15
    
16.
Kim YJ, Lenke LG, Bridwell KH. Pulmonary function in adolescent idiopathic scoliosis relative to the surgical approach. J Bone Joint Surg Am 2005;87:1534-41.  Back to cited text no. 16
    
17.
Lee SM, Suk SI, Chung ER. Direct vertebral rotation: A new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2004;29:343-9.  Back to cited text no. 17
    
18.
Kim YJ, Lenke LG, Bridwell KH, Cheh G. Bilateral Apical Vertebral Derotational Pedicle Screw Instrumentation in the Posterior Spinal Fusion of Adolescent Idiopathic Scoliosis: Comparison with Pedicle Screw Translational Techniques. Podium Presentation, International Meeting on Advanced Spine Technology Annual Meeting: Bermuda; 2004.  Back to cited text no. 18
    
19.
Levine DS, Dugas JR, Tarantino SJ, Boachie-Adjei O. Chance fracture after pedicle screw fixation. A case report. Spine (Phila Pa 1976) 1998;23:382-5.  Back to cited text no. 19
    
20.
Heini P, Schöll E, Wyler D, Eggli S. Fatal cardiac tamponade associated with posterior spinal instrumentation. A case report. Spine (Phila Pa 1976) 1998;23:2226-30.  Back to cited text no. 20
    
21.
Papin P, Arlet V, Marchesi D, Rosenblatt B, Aebi M. Unusual presentation of spinal cord compression related to misplaced pedicle screws in thoracic scoliosis. Eur Spine J 1999;8:156-9.  Back to cited text no. 21
    
22.
Alanay A, Cil A, Acaroglu E, Caglar O, Akgun R, Marangoz S, et al. Late spinal cord compression caused by pulled-out thoracic pedicle screws: A case report. Spine (Phila Pa 1976) 2003;28:E506-10.  Back to cited text no. 22
    
23.
Minor ME, Morrissey NJ, Peress R, Carroccio A, Ellozy S, Agarwal G, et al. Endovascular treatment of an iatrogenic thoracic aortic injury after spinal instrumentation: Case report. J Vasc Surg 2004;39:893-6.  Back to cited text no. 23
    
24.
Kasten M, Kambach B. Proximal Thoracic Pedicle Screw Complications: Fracture with Spinal Cord Injury. Podium Presentation, Scoliosis Research Society 2004 Annual Meeting, Buenos Aires, Argentina; September, 2004.  Back to cited text no. 24
    
25.
Rampersaud YR, Simon DA, Foley KT. Accuracy requirements for image-guided spinal pedicle screw placement. Spine (Phila Pa 1976) 2001;26:352-9.  Back to cited text no. 25
    
26.
Parent S, Labelle H, Skalli W, de Guise J. Thoracic pedicle morphometry in vertebrae from scoliotic spines. Spine (Phila Pa 1976) 2004;29:239-48.  Back to cited text no. 26
    
27.
Zindrick MR, Wiltse LL, Doornik A, Widell EH, Knight GW, Patwardhan AG, et al. Analysis of the morphometric characteristics of the thoracic and lumbar pedicles. Spine (Phila Pa 1976) 1987;12:160-6.  Back to cited text no. 27
    
28.
Chung KJ, Suh SW, Desai S, Song HR. Ideal entry point for the thoracic pedicle screw during the free hand technique. Int Orthop 2008;32:657-62.  Back to cited text no. 28
    
29.
Vaccaro AR, Rizzolo SJ, Balderston RA, Allardyce TJ, Garfin SR, Dolinskas C, et al. Placement of pedicle screws in the thoracic spine. Part II: An anatomical and radiographic assessment. J Bone Joint Surg Am 1995;77:1200-6.  Back to cited text no. 29
    
30.
Lehman RA Jr., Kuklo TR. Use of the anatomic trajectory for thoracic pedicle screw salvage after failure/violation using the straight-forward technique: A biomechanical analysis. Spine (Phila Pa 1976) 2003;28:2072-7.  Back to cited text no. 30
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Material and Methods
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2080    
    Printed34    
    Emailed0    
    PDF Downloaded15    
    Comments [Add]    

Recommend this journal