Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
    
Advanced search   
 


 
   Table of Contents  
ORIGINAL ARTICLE
Year : 2020  |  Volume : 11  |  Issue : 2  |  Page : 75-80  

A study of cervical vertebra anomalies among individuals with different sagittal and vertical facial growth patterns


1 Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
2 Department of Dentistry, Central Sterile Services Department, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India

Date of Submission15-Apr-2020
Date of Acceptance02-May-2020
Date of Web Publication5-Jun-2020

Correspondence Address:
Dr. Ashok Kumar Jena
Department of Dentistry, Central Sterile Services Department, All India Institute of Medical Sciences, Sijua, Bhubaneswar, Odisha
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcvjs.JCVJS_51_20

Rights and Permissions
   Abstract 


Objective: The objective was to evaluate the prevalence of cervical vertebra anomalies (CVA) in individuals with different sagittal and vertical skeletal growth patterns of jaws and also to establish the associations of anomalies with the type of growth, if any.
Materials and Methods: A total of 293 lateral cephalograms were evaluated for CVA. Based on the Frankfort mandibular plane angle, cephalograms were categorized into three groups: Group I, II, and III. Based on the ANB angle, cephalograms were classified into three classes, Class 1, 2, and 3. Six types of CVA such as partial cleft (PC), block fusion (BF), dehiscence (D), fusion between C2 and C3 (F23), occipitalization (OC), and spina bifida (SB) were identified on lateral cephalograms. Descriptive statistics were applied along with multinomial logistic regression analysis. P = 0.05 was considered as the level of statistical significance.
Results: PC was most common in the overall samples (36%). BF was the least common (3.2%) CVA. The frequency of various CVA was comparable between males and females in all the three classes of individuals. The association of vertical growth patterns with CVA was found to be statistically nonsignificant (P > 0.05). Class 2 malocclusion was found to be statistically significantly associated with the D (P = 0.043).
Conclusions: PC, fusion, and D were the most frequently found CVA, and SB was found only among the hypodivergent growth pattern individuals. The association of CVA with vertical facial growth patterns was not significant, somewhat influenced by age, sex, and sagittal skeletal malocclusions.

Keywords: Cervical vertebral anomalies, lateral cephalograms, sagittal growth pattern, vertical growth pattern


How to cite this article:
Anusuya V, Sharan J, Jena AK. A study of cervical vertebra anomalies among individuals with different sagittal and vertical facial growth patterns. J Craniovert Jun Spine 2020;11:75-80

How to cite this URL:
Anusuya V, Sharan J, Jena AK. A study of cervical vertebra anomalies among individuals with different sagittal and vertical facial growth patterns. J Craniovert Jun Spine [serial online] 2020 [cited 2020 Sep 19];11:75-80. Available from: http://www.jcvjs.com/text.asp?2020/11/2/75/285938




   Introduction Top


The role of head posture in the craniofacial growth and the influence of craniofacial growth on the cervical vertebra morphology are well correlated in literature.[1],[2],[3] Individuals with different vertical facial growth patterns hold their head in different postures,[4] and the functional adaptation leads to altered morphology of the cervical vertebrae.[5] Altered function of the stomatognathic system, such as mouth breathing in children with enlarged adenoids, also changes the head posture, which affects the morphology of the  Atlas More Details vertebra as an adaptation.[6] Cervical vertebra morphology on lateral cephalograms is frequently analyzed for the evaluation of skeletal maturation.[7] The same lateral cephalograms are also used to analyze the various anomalies of cervical vertebrae.[8] Thus, it serves as a diagnostic tool to rule out any asymptomatic cervical vertebra anomalies (CVA) and to predict the possibilities of future pathology.[9] Researchers have attempted to correlate the head posture and vertebral anomalies among individuals with various malocclusions.[10],[11],[12],[13],[14],[15],[16]

An increased craniocervical angle is common in individuals with hyperdivergent growth pattern.[17] The extended head posture leads to decrease in the height of atlas vertebra as an adaptive compensation.[6] Although there are few studies in the literature mentioning the association between cervical column morphology with the skeletal open bite and deep bite,[18],[19] we did not find any study evaluating the association of cervical column morphology and CVA in individuals with different vertical growth pattern of face. Thus, this study was conducted to evaluate the prevalence of CVA in individuals with different vertical growth patterns and among different sagittal skeletal malocclusions and also to establish the associations of anomalies with the type of growth, if any.


   Materials and Method Top


The present cross-sectional study was conducted on lateral cephalograms of the orthodontic patients who reported to the Orthodontic Clinic, Department of Dentistry, for the correction of their malocclusions. The radiographs recorded between February 2017 and January 2019 were examined. Selection criteria included individuals with age ≥10 years, with good-quality lateral cephalograms recorded in natural head position with Frankfort horizontal plane parallel to the floor, with teeth at centric occlusion, and with lips at the relaxed position. All the cephalograms were recorded by a trained technician in the same machine (NewTom GiANO, Italy) with exposure parameters of 80 kVp, 10 mA, and 1.6 s. Patients with various craniofacial anomalies such as cleft lip and palate, syndromes, and history of maxillofacial or cervical spine trauma were excluded.

A total of 313 cephalograms were examined initially for the quality and visibility of cervical vertebrae. After excluding 20 cephalograms, those were having positional errors, 293 cephalograms (male = 121, female = 172) were analyzed for final evaluation. Tracing and analysis of the lateral cephalograms were done in a two-dimensional orthodontic treatment planner (AudaxCeph software, Ljubljana, Slovenia) by two experienced orthodontists (AV and JS) independently. The demographic data such as age and sex were extracted from the patients' record file. Various cephalometric landmarks, reference planers, and angular parameters used in the present study are mentioned in [Figure 1]. Based on the Frankfort mandibular plane angle (FMA), cephalograms were categorized into three groups, i.e., Group I (hypodivergent, FMA <20°), Group II (normodivergent, FMA = 25° ±5°), and Group III (hyperdivergent, FMA >30°). Similarly, based on the ANB angle, which determines the sagittal maxilla-mandibular growth pattern, cephalograms were categorized into three classes, i.e., Class 1 (ANB 0°–4°), Class 2 (ANB >4°), and Class 3 (ANB <0°). The morphological characteristics of the cervical vertebra were divided into five types as per the classification suggested by Sandham,[20] i.e., partial cleft (PC), block fusion (BF), dehiscence (D), fusion (F23, between C2 and C3), and occipitalization (OC) [Figure 2]a, [Figure 2]b, [Figure 2]c, [Figure 2]d, [Figure 2]e, [Figure 2]f. In addition to this, spina bifida (SB) at the atlas vertebra was also included [Figure 2]g. Morphology of each type of anomalies was repeatedly practiced by two examiners independently. Each radiograph was visually examined for the presence of vertebral anomalies and identified separately by two examiners. The inter-observer error was calculated from the original findings. For the evaluation of intra-observer error, examiners randomly selected fifty radiographs after 2 weeks of interval and re-diagnosed the findings of CVA.
Figure 1: Cephalometric landmarks, reference planes, and various angular parameters used in the study. S – Sella, N – Nasion, Po – Porion, Or – Orbitale, Ba – Basion, A – Point A, B – Point B, Go – Gonion, Me – Menton. Reference planes. Frankfort horizontal plane – the plane between “Porion” and “Orbitale,” Mandibular plane – the plane between “Gonion” and “Menton”. Angular parameters – 1 – SNA angle, the angle between 'S,' 'N,' and 'A', 2 – SNB angle, the angle between “S,” “N,” and “B,” 3 – ANB angle, the angle between “A,” “N,” and “B,” 4 – Cranial base angle, the angle between “Ba”, “S,” and “N,” 5 – Frankfort mandibular plane angle, the angle between Frankfort horizontal plane and mandibular plane

Click here to view
Figure 2: Various cervical vertebral anomalies according to Sandham.20 (a) Partial cleft, (b) Block fusion, (c and d) Dehiscence, (e) F23 (Fusion between C2 and C3), (f) Occipitalization, and (g) Spina bifida

Click here to view


Statistical analysis

All statistical analyses were performed in the SPSS software (Statistical Packages for Social Sciences, Chicago, IL; Version 25). The collected data contained both in numerical and nominal scales. The inter-observer and intra-observer errors were calculated by using Cohen's Kappa coefficient. Descriptive statistics were used to find out the frequency of anomalies among the different sagittal and vertical growth patterns. Multinomial logistic regression analysis was done to evaluate the association of various CVA with sagittal skeletal malocclusions and with vertical facial growth patterns. Estimates of the coefficients and odds ratio (OR) were obtained with a 95% confidence interval. Along with it, the effects of sexual dimorphism and age were also evaluated as an additional output. The P = 0.05 was considered as the level of statistical significance.


   Results Top


The inter-observer agreement of Kappa was found as 0.871. The intra-observer measure of agreement Kappa for examiner AV was 0.923, and JS was 0.954. Age and cephalometric characteristics of the individuals in Group I, II, and III and in Class 1, 2, and 3 are outlined in [Table 1] and [Table 2], respectively. The frequency of different CVA and their gender-wise distribution in the three groups are described in [Table 3]. Among the six types of CVA, PC was most common in the overall samples (36%) and also in all the three vertical growth patterns. The BF was the least common (3.2%) CVA. The SB was found only in Group I individuals (hypodivergent). OC and PC were highest in the Group III individuals. A significant increase in the vertebral anomalies was found in females of Group III (hyperdivergent), and the difference between males and females was statistically significant (P = 0.025). [Table 4] outlines the distribution and comparison of anomalies among patients with various sagittal skeletal malocclusions (Class 1, 2, and 3). The frequency of various CVA was comparable between males and females in all the three classes of individuals.
Table 1: Age, sex, and cephalometric characteristics of Group I, Group II, and Group III individuals

Click here to view
Table 2: Age, sex, and cephalometric characteristics of Class 1, Class 2, and Class 3 individuals

Click here to view
Table 3: Gender-wise frequency of various cervical vertebra anomalies among the Group I, II, and III individuals

Click here to view
Table 4: Distribution and comparison of various cervical vertebra anomalies among the sagittal skeletal classes of malocclusion

Click here to view


[Table 5] outlines the factors influencing the occurrence of the anomalies via the results of multinomial logistic regression analysis. Model fitting information for the final model revealed a statistically significant (P = 0.013) association of the CVA with the factors analyzed, and the Pearson's correlation value was 1.00. However, the individual effect of group (P = 0.147) and age (P = 0.100) was not that discriminative as the final model, whereas the impact of sex was statistically significant (P = 0.047) in the reduced model. The Nagelkerke pseudo R2 value was 0.144. The PC was chosen as the reference category. The association of vertical growth patterns with anomalies was found to be statistically nonsignificant (P > 0.05). Compared to skeletal Class 3, Class 2 malocclusion was found to be significantly associated with the D (P = 0.043). Skeletal Class 2 malocclusion patients had 9.692 times more D than PC. [Table 5] explains the effect of age on the likelihood of other anomalies relative to the incomplete cleft. A significant difference was found between the PC, normal vertebrae, and fusion anomalies. For each unit increase in the age, it was less likely to have normal vertebrae (0.943 = OR) and fusion anomalies (0.837 = OR) relative to the PC.
Table 5: Factors influencing the occurrence of the anomalies

Click here to view



   Discussion Top


The study analyzed six different types of CVA, i.e., PC, D, SB, vertebrae fusion, BF, and OC among subjects with different sagittal and vertical jaw relationship. Among them, PC, fusion, and D were very common. PC, SB, and D are the anomalies at the posterior arch of the atlas. PC and D are due to the posterior arch deficiency. SB results from the failure of fusion at the posterior arch. Whereas, fusion anomalies are fusion and BF where joining between two vertebrae occurs at different levels, and OC is the fusion of atlas with the occipital bone. The findings of our study deviate from the previous study concerning the order of CVA prevalence, where the most common anomalies were in the descending order of D, fusion, and PC.[12] In our total sample, 42.6% deviated from the normal cervical vertebra morphology, and the fusion was commonly found between C2 and C3 vertebrae. These findings were inconsistent with those of the previous study.[12] Furthermore, the present study analyzed the anomalies among the three different vertical growth patterns that were not studied before.

The order of anomalies among the three groups was similar to that of total samples, i.e., PC, fusion, and D. Compared to previous studies,[11],[12],[13],[14] another morphology found in the present study was SB in the atlas. In total samples, 4.8% was the SB, which was also noticed only in the hypodivergent growth pattern subjects. After the PC and fusion, SB was found more in hypodivergent subjects. Generally, SB occurs often with other syndromes; the defect of the atlas can be at the posterior or anterior arch. The defect in the posterior arch occurs more about 4% of the cases compared to the anterior arch. The specific finding of the bifid spine in the hypodivergent growth pattern may guide us to look for the other associated syndrome or anomalies.

OC was found highest among the hyperdivergent growth pattern individuals. The association of cervical column morphology with the large cranial angle has been observed previously, and the role of embryological development in the early pattern of cranial growth was noted.[21] The OC is congenital synostosis with failure of separation of the most caudal sclerotome between the last occipital and first cervical sclerotome. Generally, it presents with other skeletal malformations, about 70% with the fusion of C2–C3.[22] Clinical manifestations of OC are usually asymptomatic in younger age, but neurological dysfunction tends to occur with the increase of age.[23]

Hyperdivergent growth pattern patients with downward and backward rotation of jaws have a large cranial angle and maintain an extended neck posture. The change of growth pattern in the vertical dimension with adaptation in the cervical vertebrae to maintain the balance in head posture led us to quest the expected association between the two. However, from the multinomial analysis, the association in the prevalence of anomalies with the vertical growth patterns was not statistically significant except for the specific occurrence of SB only in the hypodivergent growth pattern. The D and fusion were more likely to occur in normodivergent growth patterns than hyperdivergent, though the difference was not significant. When the sexual dimorphism was considered, a significant difference was found in the hyperdivergent growth pattern individuals. Females were more prone to have anomalies compared to males. This effect could even be due to the chance that a higher representation of female gender in the hyperdivergent group than other groups.

Among different sagittal skeletal malocclusion individuals, the prevalence of the CVA was in the same order as in overall, i.e., PC, fusion, and D. SB and OC were not present in the Class 3 individuals, whereas they were found maximum in the Class 1 individuals. This was in contrast to the previous study, where Class 3 individuals were having the highest occurrence of D and fusion.[12],[15] In addition, OC was seen only in Class 3 individuals.[12] It could be due to the difference in the population chosen in both the studies and the influence of their genetic and ethnic components over the vertebral morphology. When sexual dimorphism was concerned, there was no significant sexual dimorphism found in any of the anomalies. Logistic regression analysis revealed a significant influence of age, sex, and growth patterns. Although multifactorial, the effect of age on the fusion of vertebral units was significantly associated with each other, i.e., with the increase in age, the occurrence of fusion was less. This explained the role of early embryological changes with the fusion anomalies. In addition, a significant relation was found between the D and skeletal Class 2 malocclusions when comparing with Class 3 malocclusions. A similar finding was also noted in the previous study, but the reason remains inexplicable.[12]

The only limitation of the present study was the use of lateral cephalograms, as two-dimensional images may influence the representation of actual anomalies. However, all the radiographs were recorded by an experienced technician in the standard position. Hence, it will possibly eliminate the effect of change in the head posture and the appearance of vertebrae in the lateral cephalogram. As the growth pattern was the primary concern, the remaining dental and soft tissue cephalometric parameters were not analyzed.


   Conclusions Top


The following conclusions were drawn from the present study:

  • PC, fusion, and D were the most frequently found CVA, and SB was found only among the hypodivergent growth pattern
  • The association of CVA with vertical facial growth patterns was not significant, somewhat influenced by age, sex, and sagittal skeletal malocclusions
  • PC and fusion anomalies were associated with age
  • D was associated with skeletal Class 2 malocclusion.


Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Kylämarkula S, Huggare J. Head posture and the morphology of the first cervical vertebra. Eur J Orthod 1985;7:151-6.  Back to cited text no. 1
    
2.
Huggare J. Association between morphology of the first cervical vertebra, head posture, and craniofacial structures. Eur J Orthod 1991;13:435-40.  Back to cited text no. 2
    
3.
Huggare JA, Raustia AM. Head posture and cervicovertebral and craniofacial morphology in patients with craniomandibular dysfunction. Cranio 1992;10:173-7.  Back to cited text no. 3
    
4.
Schudy FF. Vertical growth versus anteroposterior growth as related to function and treatment. Angle Orthod 1964;34:75-93.  Back to cited text no. 4
    
5.
Solow B, Siersbaek-Nielsen S. Growth changes in head posture related to craniofacial development. Am J Orthod 1986;89:132-40.  Back to cited text no. 5
    
6.
Huggare J, Kylämarkula S. Morphology of the first cervical vertebra in children with enlarged adenoids. Eur J Orthod 1985;7:93-6.  Back to cited text no. 6
    
7.
Baccetti T, Franchi L, McNamara JA Jr. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod 2005;11:119-29.  Back to cited text no. 7
    
8.
Uǧar DA, Semb G. The prevalence of anomalies of the upper cervical vertebrae in subjects with cleft lip, cleft palate, or both. Cleft Palate Craniofac J 2001;38:498-503.  Back to cited text no. 8
    
9.
Soni P, Sharma V, Sengupta J. Cervical vertebrae anomalies-incidental findings on lateral cephalograms. Angle Orthod 2008;78:176-80.  Back to cited text no. 9
    
10.
Solow B, Sonnesen L. Head posture and malocclusions. Eur J Orthod 1998;20:685-93.  Back to cited text no. 10
    
11.
Kamak H, Yildırım E. The distribution of cervical vertebrae anomalies among dental malocclusions. J Craniovertebr Junction Spine 2015;6:158-61.  Back to cited text no. 11
    
12.
Aranitasi L, Tarazona B, Zamora N, Gandía JL, Paredes V. Influence of skeletal class in the morphology of cervical vertebrae: A study using cone beam computed tomography. Angle Orthod 2017;87:131-7.  Back to cited text no. 12
    
13.
Sonnesen L, Kjaer I. Cervical column morphology in patients with skeletal Class III malocclusion and mandibular overjet. Am J Orthod Dentofacial Orthop 2007;132:427.e7-12.  Back to cited text no. 13
    
14.
Sonnesen L, Kjaer I. Anomalies of the cervical vertebrae in patients with skeletal Class II malocclusion and horizontal maxillary overjet. Am J Orthod Dentofacial Orthop 2008;133:188.e15-20.  Back to cited text no. 14
    
15.
Meibodi SE, Parhiz H, Motamedi MH, Fetrati A, Meibodi EM, Meshkat A. Cervical vertebrae anomalies in patients with class III skeletal malocclusion. J Craniovertebr Junction Spine 2011;2:73-6.  Back to cited text no. 15
    
16.
Watanabe M, Yamaguchi T, Maki K. Cervical vertebra morphology in different skeletal classes. A three-dimensional computed tomography evaluation. Angle Orthod 2010;80:531-6.  Back to cited text no. 16
    
17.
Ansar J, Maheshwari S, Verma SK, Singh RK, Agarwal DK, Bhattacharya P. Soft tissue airway dimensions and craniocervical posture in subjects with different growth patterns. Angle Orthod 2015;85:604-10.  Back to cited text no. 17
    
18.
Sonnesen L, Kjaer I. Cervical vertebral body fusions in patients with skeletal deep bite. Eur J Orthod 2007;29:464-70.  Back to cited text no. 18
    
19.
Sonnesen L, Kjaer I. Cervical column morphology in patients with skeletal open bite. Orthod Craniofac Res 2008;11:17-23.  Back to cited text no. 19
    
20.
Sandham A. Cervical vertebral anomalies in cleft lip and palate. Cleft Palate J 1986;23:206-14.  Back to cited text no. 20
    
21.
Arntsen T, Sonnesen L. Cervical vertebral column morphology related to craniofacial morphology and head posture in preorthodontic children with Class II malocclusion and horizontal maxillary overjet. Am J Orthod Dentofacial Orthop 2011;140:e1-7.  Back to cited text no. 21
    
22.
Bharucha EP, Dastur HM. Craniovertebral anomalies (a report on 40 cases). Brain 1964;87:469-80.  Back to cited text no. 22
    
23.
Bassi P, Corona C, Contri P, Paiocchi A, Loiero M, Mangoni A. Congenital basilar impression: Correlated neurological syndromes. Eur Neurol 1992;32:238-43.  Back to cited text no. 23
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Materials and Method
   Results
   Discussion
   Conclusions
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed287    
    Printed24    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal