Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
Advanced search   
Year : 2014  |  Volume : 5  |  Issue : 1  |  Page : 33-37

Unilateral atlanto-axial fractures in near side impact collisions: An under recognized entity in cervical trauma

1 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
2 Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA

Correspondence Address:
Joseph F Cusick
Department of Neurosurgery, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI - 53226
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0974-8237.135216

Rights and Permissions

Objective: Nearside impact collisions presenting with lateral mass fractures of atlanto-axial vertebrae contralateral to the impact site represents a rare fracture pattern that does not correlate with previously described injury mechanism. We describe our clinical experience with such fractures and propose a novel description of biomechanical forces involved in this unique injury pattern. The findings serve to alert clinicians to potentially serious consequences of associated unrecognized and untreated vertebral artery injury. Material and Methods : In addition to describing our clinical experience with three of these fractures, a review of Crash Injury Research and Engineering Network (CIREN) database was conducted to further characterize such fractures. A descriptive analysis of three recent lateral mass fractures of the atlanto-axial segment is coupled with a review of the CIREN database. A total of 4047 collisions were screened for unilateral fractures of atlas or axis. Information was screened for side of impact and data regarding impact velocity, occupant injuries and use of restraints. Results: Following screening of unilateral fractures of atlas and axis for direct side impacts, 41 fractures were identified. Cross referencing these cases for occurrence contralateral to side of impact identified four such fractures. Including our recent clinical experience, seven injuries were identified: Five C1 and two C2 fractures. Velocity ranged from 14 to 43 km/h. Two associated vertebral artery injuries were identified. Conclusions: Complexity of the atlanto-axial complex is responsible for a sequence of events that define load application in side impacts. This study demonstrates the vulnerability of vertebral artery to injury under unique translational forces and supports the use or routine screening for vascular injury. Diminished sensitivity of plain radiography in identifying these injuries suggests that computerized tomography should be used in all patients wherein a similar pattern of injury is suspected.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded15    
    Comments [Add]    

Recommend this journal