Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
    
Advanced search   
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 11  |  Issue : 4  |  Page : 293-299

Combined transoral exoscope and OArm-assisted approach for craniovertebral junction surgery: Light and shadows in single-center experience with improving technologies


1 Institute of Neurosurgery, Operative Unit, Research Center and Master II Degree Surgical Approaches Craniovertebral Junction, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
2 Department of Neurosurgery, University of Bari, Medical School, Bari, Italy
3 Departement of Neurological Surgery, Policlinico Gaspare Rodolico University Hospital, Catania, Italy

Correspondence Address:
Pier Paolo Mattogno
Institute of Neurosurgery, Operative Unit, Research Center and Master II Degree Surgical Approaches Craniovertebral Junction, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcvjs.JCVJS_176_20

Rights and Permissions

Background: The introduction of recent innovations in the field of intraoperative imaging and neuronavigation, such as OArm Stealth Station, allows to obtain crucial intraoperative data by performing safer and controlled surgical procedures. As part of the improvement of surgical visual magnification and wide expansion of surgical corridors, the 3D-4K exoscope (EX) represents nowadays an interesting and useful tool. Transoral approach (TOA) represents the historical gold standard direct microsurgical route to ventral craniovertebral junction (CVJ). Methods: We herein report a preliminary experience on 6 cases of 33 patients operated by TOA concerning the simultaneous application of OArm with Stealth Navigation system (Medtronic, Memphis, TN) and imaging system along with the 3D-4K EXs in TOA for the treatment of CVJ pathologies. Results: Neither intraoperative neurophysiological changes nor postoperative infections occurred, but a neurological improvement was evident in all the patients. A complete decompression along with stable instrumentation and fusion of the CVJ was accomplished in all cases at the maximum follow-up (mean: 16.8 months). Conclusions: With EX, the role of surgeon become self-sufficient with a better individual surgical freedom compared to endoscopic surgery and excellent 3D vision and magnification. OArm allows an absolutely reliable intraoperative support for a more effective CVJ decompression. Nevertheless, with OArm-assisted neuronavigation, it can be difficult to navigate C1 lateral masses and C2 isthmi, and to convert 3D into 2D real-time navigation, it can become quite complicate. Finally, the association of EX and OArm appears more time consuming compared to the old fashion one.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed268    
    Printed2    
    Emailed0    
    PDF Downloaded7    
    Comments [Add]    

Recommend this journal