Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
    
Advanced search   
 
ORIGINAL ARTICLE
Year : 2022  |  Volume : 13  |  Issue : 2  |  Page : 159-162

C1-C2 arthroplasty for craniovertebral junction instability: A preliminary proof of concept in human cadavers


1 Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
2 Department of Bioengineering, Engineering Center for Orthopaedic Research Excellence, The University of Toledo, Toledo, Ohio, USA

Correspondence Address:
Madhivanan Karthigeyan
Department of Neurosurgery, PGIMER, Sector 12, Chandigarh - 160 012
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcvjs.jcvjs_33_22

Rights and Permissions

Background: The atlantoaxial complex contributes to significant neck movements, especially the axial rotation. Its instability is currently treated with various C1-C2 fusion techniques. This however, considerably hampers the neck movements and affects the quality of life; a C1-C2 motion preserving arthroplasty could potentially overcome this drawback. Objectives: We evaluate the range of motion (ROM) of lateral C1-C2 artificial joints in cadaveric models. Materials and Methods: This is an in vitro cadaveric biomechanical study. After C1-C2 arthroplasty through a posterior approach, the C1-C2 ROM was tested in 4 fresh-frozen human cadaveric specimens, before and after destabilization. Results: The mean axial rotation demonstrated after the placement of C1-C2 joint implants was 15.46 degrees on the right and 16.03 degrees on the left side; the prosthesis provided stability, with 46% of the baseline C1-C2 axial rotation on either side. The ROM achieved in the other axes was less compared with that of intact specimens. To initiate rotation, a higher moment of 1.5 Nm was required in the presence of joint implants compared to 0.5 NM in unimplanted specimens. Conclusions: In our preliminary ROM evaluation, the C1-C2 arthroplasty appears to be stable and provides about half of the range of atlantoaxial rotation. It has the potential for joint motion preservation in the treatment of atlantoaxial instability resulting from lateral C1-C2 joint pathologies.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1136    
    Printed40    
    Emailed0    
    PDF Downloaded122    
    Comments [Add]    

Recommend this journal