Close
  Indian J Med Microbiol
 

Figure 1: Images of a 57-year-old female patient [Table 1- Case 1]. (a) T2-weighted magnetic resonance imaging showing moderate cervical spinal degenerative changes in the form of bulging disc spaces and ligamentum flavum. Intra-axial cord signals are seen at C4-5 and C6-7 levels. (b) Computed tomography scan with the head in flexed position does not show any evidence of bone injury or instability. (c) Computed tomography scan with the head in the extended position. (d) Computed tomography scan cut passing through the facets showing no significant abnormality or instability. (e) Postoperative computed tomography scan showing the cervical spine alignment. No posterior decompression has been done. (f) Computed tomography scan cut through the facets showing transarticular fixation. (g) Computed tomography scan showing the fixation construct. (h) Delayed magnetic resonance imaging (after 3 months of surgery) showing regression of the osteophyte and resolution of intra-axial spinal cord changes

Figure 1: Images of a 57-year-old female patient [Table 1- Case 1]. (a) T2-weighted magnetic resonance imaging showing moderate cervical spinal degenerative changes in the form of bulging disc spaces and ligamentum flavum. Intra-axial cord signals are seen at C4-5 and C6-7 levels. (b) Computed tomography scan with the head in flexed position does not show any evidence of bone injury or instability. (c) Computed tomography scan with the head in the extended position. (d) Computed tomography scan cut passing through the facets showing no significant abnormality or instability. (e) Postoperative computed tomography scan showing the cervical spine alignment. No posterior decompression has been done. (f) Computed tomography scan cut through the facets showing transarticular fixation. (g) Computed tomography scan showing the fixation construct. (h) Delayed magnetic resonance imaging (after 3 months of surgery) showing regression of the osteophyte and resolution of intra-axial spinal cord changes